An accelerated first-order method for solving SOS relaxations of unconstrained polynomial optimization problems
نویسندگان
چکیده
An accelerated first-order method for solving SOS relaxations of unconstrained polynomial optimization problems Dimitris Bertsimas , Robert M. Freund & Xu Andy Sun To cite this article: Dimitris Bertsimas , Robert M. Freund & Xu Andy Sun (2013) An accelerated first-order method for solving SOS relaxations of unconstrained polynomial optimization problems, Optimization Methods and Software, 28:3, 424-441, DOI: 10.1080/10556788.2012.656114 To link to this article: http://dx.doi.org/10.1080/10556788.2012.656114
منابع مشابه
An Accelerated First-Order Method for Solving Unconstrained SOS Polynomial Optimization Problems
Our interest lies in solving large-scale unconstrained SOS (sum of squares) polynomial optimization problems. Because interior-point methods for solving these problems are severely limited by the large-scale, we are motivated to explore efficient implementations of an accelerated first-order method to solve this class of problems. By exploiting special structural properties of this problem clas...
متن کاملAn Accelerated First-Order Method for Solving Unconstrained Polynomial Optimization Problems
Our interest lies in solving large-scale unconstrained polynomial optimization problems. Because interior-point methods for solving these problems are severely limited by the large-scale, we are motivated to explore efficient implementations of an accelerated first-order method to solve this class of problems. By exploiting special structural properties of this problem class, we greatly reduce ...
متن کاملSums of Squares and Semidefinite Programming Relaxations for Polynomial Optimization Problems with Structured Sparsity
Unconstrained and inequality constrained sparse polynomial optimization problems (POPs) are considered. A correlative sparsity pattern graph is defined to find a certain sparse structure in the objective and constraint polynomials of a POP. Based on this graph, sets of supports for sums of squares (SOS) polynomials that lead to efficient SOS and semidefinite programming (SDP) relaxations are ob...
متن کاملSums of Squares and Semidefinite Program Relaxations for Polynomial Optimization Problems with Structured Sparsity
Unconstrained and inequality constrained sparse polynomial optimization problems (POPs) are considered. A correlative sparsity pattern graph is defined to find a certain sparse structure in the objective and constraint polynomials of a POP. Based on this graph, sets of the supports for sums of squares (SOS) polynomials that lead to efficient SOS and semidefinite program (SDP) relaxations are ob...
متن کاملA Free Line Search Steepest Descent Method for Solving Unconstrained Optimization Problems
In this paper, we solve unconstrained optimization problem using a free line search steepest descent method. First, we propose a double parameter scaled quasi Newton formula for calculating an approximation of the Hessian matrix. The approximation obtained from this formula is a positive definite matrix that is satisfied in the standard secant relation. We also show that the largest eigen value...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Optimization Methods and Software
دوره 28 شماره
صفحات -
تاریخ انتشار 2013