An accelerated first-order method for solving SOS relaxations of unconstrained polynomial optimization problems

نویسندگان

  • Dimitris Bertsimas
  • Robert M. Freund
  • Xu Andy Sun
چکیده

An accelerated first-order method for solving SOS relaxations of unconstrained polynomial optimization problems Dimitris Bertsimas , Robert M. Freund & Xu Andy Sun To cite this article: Dimitris Bertsimas , Robert M. Freund & Xu Andy Sun (2013) An accelerated first-order method for solving SOS relaxations of unconstrained polynomial optimization problems, Optimization Methods and Software, 28:3, 424-441, DOI: 10.1080/10556788.2012.656114 To link to this article: http://dx.doi.org/10.1080/10556788.2012.656114

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Accelerated First-Order Method for Solving Unconstrained SOS Polynomial Optimization Problems

Our interest lies in solving large-scale unconstrained SOS (sum of squares) polynomial optimization problems. Because interior-point methods for solving these problems are severely limited by the large-scale, we are motivated to explore efficient implementations of an accelerated first-order method to solve this class of problems. By exploiting special structural properties of this problem clas...

متن کامل

An Accelerated First-Order Method for Solving Unconstrained Polynomial Optimization Problems

Our interest lies in solving large-scale unconstrained polynomial optimization problems. Because interior-point methods for solving these problems are severely limited by the large-scale, we are motivated to explore efficient implementations of an accelerated first-order method to solve this class of problems. By exploiting special structural properties of this problem class, we greatly reduce ...

متن کامل

Sums of Squares and Semidefinite Programming Relaxations for Polynomial Optimization Problems with Structured Sparsity

Unconstrained and inequality constrained sparse polynomial optimization problems (POPs) are considered. A correlative sparsity pattern graph is defined to find a certain sparse structure in the objective and constraint polynomials of a POP. Based on this graph, sets of supports for sums of squares (SOS) polynomials that lead to efficient SOS and semidefinite programming (SDP) relaxations are ob...

متن کامل

Sums of Squares and Semidefinite Program Relaxations for Polynomial Optimization Problems with Structured Sparsity

Unconstrained and inequality constrained sparse polynomial optimization problems (POPs) are considered. A correlative sparsity pattern graph is defined to find a certain sparse structure in the objective and constraint polynomials of a POP. Based on this graph, sets of the supports for sums of squares (SOS) polynomials that lead to efficient SOS and semidefinite program (SDP) relaxations are ob...

متن کامل

A Free Line Search Steepest Descent Method for Solving Unconstrained Optimization Problems

In this paper, we solve unconstrained optimization problem using a free line search steepest descent method. First, we propose a double parameter scaled quasi Newton formula for calculating an approximation of the Hessian matrix. The approximation obtained from this formula is a positive definite matrix that is satisfied in the standard secant relation. We also show that the largest eigen value...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Optimization Methods and Software

دوره 28  شماره 

صفحات  -

تاریخ انتشار 2013